Problem Set I

Macroeconomics II

Armando Näf*

August 14, 2020

1 CIES/CRRA Utility Functions

Suppose that a household lives for two periods $(t=0,1)$ and maximizes lifetime utility given by:

$$
\begin{equation*}
u\left(c_{0}\right)+\beta u\left(c_{1}\right) \quad \text { with } \quad u(c)=\frac{c^{1-\sigma}}{1-\sigma} \quad \sigma>0 \text { and } \sigma \neq 1 \tag{1}
\end{equation*}
$$

1. The coefficient of relative risk aversion is defined as $-\frac{u^{\prime \prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t}\right)} c_{t}$. Derive the coefficient of relative risk aversion.
2. Now use the more general CRRA-utility function: $u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}$. Show that $\lim _{\sigma \rightarrow 1} u(c)=\ln (c)$. Hint: Use l'Hôpital's rule: If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ or $\pm \infty$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
3. Suppose the household receives some income w_{0} at date 0 and receives no income afterwards. The intertemporal budget constraint is then given by:

$$
c_{0}+\frac{c_{1}}{R}=w_{0} \quad w_{0}>0, R>1
$$

Write down the Lagrangian for the households' optimization problem and solve for the optimal consumption at date 1 relative to date $0\left(\frac{c_{1}^{*}}{c_{0}^{*}}\right)$.
4. Derive the intertemporal elasticity of substitution.

Hints: The intertemporal elasticity of substitution denotes the elasticity of optimal consumption $\frac{c_{1}^{*}}{c_{0}^{*}}$ with respect to changes in the interest rate R. Recall that the elasticity of a function $f(x)$ with respect to x equals:

$$
\varepsilon_{x}=\frac{x}{f(x)} f^{\prime}(x)
$$

2 Constant Returns to Scale Production Functions

Suppose firms employ a production function $f(K, L)$ with constant returns to scale.

1. Denote w and r as the market wage and capital rental rate respectively. Suppose factor markets are competitive, such that the wage equals the marginal product of labor $\left(w=f_{L}(K, L)\right)^{1}$ and the capital rental rate equals the marginal product of capital $\left(r=f_{K}(K, L)\right)$. Show that constant returns to scale combined with competitive factor markets imply that firms make zero profits.
[^0]Hint: Use Euler's theorem which says that, if a function $f\left(x_{1}, . ., x_{n}\right)$ is homogenous of degree k, then $\sum_{j=1}^{n} \frac{\partial f\left(x_{1}, . ., x_{n}\right)}{\partial x_{j}} x_{j}=k f\left(x_{1}, . ., x_{n}\right)$.
2. Write output per worker as a function of the capital-labor ratio $k=\frac{K}{L}$
3. Write both the wage rate and the capital rental rate as functions of k (assuming that w and r equal the marginal product of the respective production factor).
4. What would firm profits be if there were increasing or decreasing returns to scale? (With competitive factor markets).

3 Competitive Equilibrium in an Exchange Economy

Consider an economy with two goods, x and y. There are N households each endowed with \bar{x} of good x and zero of good y, and M households each endowed with zero of good x and \bar{y} of good y. All households have identical preferences $U=u(x)+u(y)$. Utility $u(.$.$) is strictly increasing and strictly$ concave. Furthermore, consumption of both goods is essential, that is, it is never optimal to consume zero of one good. Suppose prices in this economy are expressed in terms of good x (x is the so called "numeraire") so the price of x is 1 and p is the price of good y in terms of good x.

1. Write down the maximization problem of both types of households.
2. Assume CRRA-utility. What is the elasticity of substitution between good x and y with respect to changes in p ?
3. Assume log-utility (i.e. $\sigma=1$). Solve for consumption levels of both types of households.
4. Define the competitive equilibrium in this economy and derive the equilibrium price p.

4 Competitive Equilibrium in a Production Economy

We now consider a static economy with production. There are N households. Each is endowed with \bar{k} units of capital. Households work l_{h} hours and consume c consumption goods. Their utility is $U=$ $u(c)-v\left(l_{h}\right)$ where $u(\cdot)$ is increasing and strictly concave and $v(\cdot)$ is increasing and weakly convex. There are M firms, each of them produces consumption goods with a constant return to scale technology out of labor and capital: $Y=f\left(k_{f}, l_{f}\right)$. Markets are competitive. Assume all prices are denoted in terms of the consumption good c (numeraire). Denote r as the real rental rate of capital (in terms of consumption goods) and w as the real wage.

1. Write down the maximization problem of a household. Derive first order conditions for working and consuming.
2. Write down the maximization problem of a firm. Derive first order conditions for labor and capital demand.
3. Define the competitive equilibrium in this economy.
4. Use $u(c)=\ln (c), v\left(l_{h}\right)=l_{h}$ and $f\left(k_{f}, l_{f}\right)=k^{\alpha} l^{1-\alpha}$. Derive the equilibrium labor supply, real wage and rental rate of capital.

[^0]: ${ }^{*}$ I am sure there are many typos in the script. If you find any please send me an email to armando.naef@vwi.unibe.ch
 ${ }^{1} f_{x}(x, y)$ denotes the partial derivative of $f(x, y)$ with respect to y.

