Problem Set II

Macroeconomics II

Armando Näf*

August 26, 2020

1 Dynamic Optimization with two periods (T = 1)

There is a representative household living for two periods (t = 0, 1). Let c_t and a_t denote the household's consumption and assets in period t, respectively. The household's objective function is given by

$$\max u(c_0) + \beta u(c_1),$$

where u(c) is of the CIES form

$$u(c) = \frac{c^{1-\sigma} - 1}{1-\sigma},$$

 $\sigma > 0, \sigma \neq 1$. Assuming that the household has no assets to start with $(a_0 = 0)$, the dynamic budget constraints read

$$a_1 + c_0 = w_0,$$

 $a_2 + c_1 = w_1 + a_1 R_1.$

 R_t denotes the gross interest rate, w_t the wage in period t.

- 1. Discuss the conditions under which the household chooses $a_2 = 0$.
- 2. Setting $a_2 = 0$, combine the dynamic budget constraints to derive the intertemporal budget constraint (IBC). Interpret the IBC.
- 3. Setting $a_2 = 0$, solve the maximization problem of the household subject to either the dynamic budget constraints or the IBC. Derive and interpret the Euler equation.
- 4. According to the Euler equation, the slope of the consumption profile is determined by three factors: a consumption smoothing motive, patience, and intertemporal prices. Identify and interpret these factors. What happens to the consumption smoothing motive if the utility function is linear rather than strictly concave?
- 5. Use the Euler equation together with the intertemporal budget constraint to solve for the optimal consumption in periods t = 0, 1 (c_0^* and c_1^*) and the optimal savings at the end of period 0 (a_1^*).
- 6. The interest rate R_1 affects consumption threefold: through wealth, income and substitution effects. Identify and interpret these effects. What happens if the felicity function is logarithmic?

^{*}I am sure there are many typos in the script. If you find any please send me an email to armando.naef@vwi.unibe.ch

2 Dynamic Optimization with many periods (T > 1)

There is a representative household living for T + 1 periods (t = 0, 1, ..., T). The household's objective is to maximize the sum of discounted utility subject to a set of dynamic budget constraints, a terminal condition and an initial condition; i.e. the household's problem reads

$$\max \sum_{t=0}^{T} \beta^{t} u(c_{t})$$

s.t. $a_{t+1} = a_{t}R_{t} + w_{t} - c_{t}$ for $t = 0, 1, \dots, T$
 $a_{T+1} \ge 0$
 $a_{0}R_{0}$ given.

- 1. Derive the intertemporal budget constraint (IBC) by combining the dynamic budget constraints and the terminal condition ("conjecturing" $a_{T+1} = 0$). Interpret the IBC.
- 2. Solve the maximization problem subject to the IBC. Derive the Euler equation.
- 3. Suppose that $\beta R_t = 1$ for all t. Solve for the optimal consumption path. Do you need to make functional form assumptions about $u(\cdot)$?
- 4. Solve the maximization problem subject to the dynamic budget constraints and the terminal condition $(a_{T+1} \ge 0)$ rather than the intertemporal budget constraint (maximization under inequality constraints). Derive the Euler equation and the transversality condition $(a_{T+1} = 0)$.

3 Stochastic Consumption Path

Suppose that aggregate consumption is a stochastic variable. In particular, suppose that $\tilde{c}_t = \ln c_t$ has an i.i.d. Normal distribution with mean μ_c and variance σ_c^2 . Suppose that the expected utility is given by

$$U = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma} - 1}{1-\sigma} \right],$$

where $\mathbb{E}_0[\cdot]$ is the expectations operator given the information set at period t = 0.

- 1. Why is there no difference between using $\frac{c_t^{1-\sigma}}{1-\sigma}$ as the felicity function and $\frac{c_t^{1-\sigma}-1}{1-\sigma}$, except when $\sigma = 1$?
- 2. Derive an excession for U. Hint: if \tilde{c}_t is normally distributed with mean μ_c and variance σ_c^2 , then

$$\mathbb{E}\left[e^{\tilde{c}_t}\right] = e^{\mu_c + \frac{1}{2}\sigma_c^2}$$

- 3. The idea of welfare calculations is to investigate the impact of increases in σ_c keeping the value of $\mathbb{E}[c_t]$ the same. This means that we have to adjust μ_c if we change σ_c . Calculate the value for U when $\sigma_c = 0$ (i.e., no fluctuations) and when $\sigma_c = 0.02$. Let σ be equal to 0, 2, and 10. Remember to adjust μ_c .
- 4. The value of U is lower when σ_c is higher. Consider an agent facing $\sigma_c = 0.02$. With how much do I have to increase his consumption level each period to make him as well of as the agent facing $\sigma_c = 0$?

5. A value of $\sigma_c = 0.02$ is reasonable for aggregate fluctuations. The calculations above are based on the assumption that the risk is spread equally across the population. But now suppose that 95% of the population are never confronted with changes in their consumption level and all changes in aggregate consumption are due to 5% of the population adjusting their consumption level. Also, assume that the mean consumption level is the same across agents. How costly would business cycles be for those unlucky agents?