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August 26, 2020

1 Solution: No-Ponzi-game condition

Consider an infinitely lived household with assets a0 < 0 at time t = 0. The household compares different

options of servicing the debt, as specified below. For each option, check whether the household satisfies

the condition limT→∞ aT+1 ≥ 0 and/or the no-Ponzi-game condition limT→∞ qTaT+1 ≥ 0,, where qT =
1

R1R2···RT
and compute the present discounted value of the debt service (discounting at the gross interest

rate R). Assume that income is sufficiently high such that each option is feasible.

1. In period 0, fully repay all debt (i.e., pay −Ra0).

Solution:

Very simple strategy. In period 0 service all the debt and choose a1 = 0. The debt payment (S)

is therefore given by St = −a0R for period t = 0 and St = 0,∀t > 0, hence a1 = a0 + S0 = 0 and

at = 0,∀t > 1. What about the two conditions:

• limT→∞ aT+1 ≥ 0: Since at = 0,∀t > 1 this is clearly satisfied.

• limT→∞ qTaT+1 ≥ 0: Since at = 0,∀t > 1 this is also satisfied.

Net present value of all debt payments is given by
∑∞
t=0 qtSt = −a0R.

2. In each period t ≥ 0, pay −xat, where 0 < x < R.

Solution:

In this strategy households choose to repay a fraction of the debt in every period St = −xat,∀t.
The assets of the household evolve as follows:

at+1 = atRt + St

= atR− xat
= at(R− x)

= a0(R− x)t+1

What about the two conditions:
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• limT→∞ aT+1 ≥ 0:

lim
T→∞

aT+1 = lim
T→∞

a0(R− x)T+1 ?
> 0

The condition is only fulfilled if R− x < 1.

• limT→∞ qTaT+1 ≥ 0:

lim
T→∞

qTaT+1 = lim
T→∞

1

RT
a0(R− x)T+1

= lim
T→∞

(R− x)

(
R− x
R

)T
a0 = 0

The no-Ponzi-game condition is always fulfilled since R−x
R < 1

Net present value of all debt payments is given by
∑∞
t=0 qtSt.

∞∑
t=0

qtSt =

∞∑
t=0

1

Rt
(−xa0)(R− x)t︸ ︷︷ ︸

=St

= −xa0
∞∑
t=0

(
R− x
R

)t
= −xa0

1

1− R−x
R

= −a0R

The net present value of the debt service with the second strategy is therefore equivalent to strategy

number one.

3. In each period t ≥ 0, don’t pay anything.

Solution: In the last strategy households choose to repay none of the debt in every period St = 0,∀t.
The assets of the household evolve as follows are therefore decreasing as the interest rates are

continued to be payed with additional debt and at = Rta0. The net present value of the debt

service is therefore equal to zero since no debt is ever paid. What about the two conditions:

• limT→∞ aT+1 ≥ 0:

lim
T→∞

aT+1 = RT+1a0 → −∞

The first condition is clearly violated as the debt keeps piling up.

• limT→∞ qTaT+1 ≥ 0:

lim
T→∞

qTaT+1 =
RT+1

RT
a0 = Ra0 < 0

The no-Ponzi-game condition is also violated. In fact, this strategy is what we call a Ponzi-

game because the households try to repay the debt by paying their old debt with new debt

plus additional debt for the interest payments. It’s called after Charles Ponzi an Italian who

used the Ponzi scheme in the US to enrich himself.
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2 Solution: Intertemporal budget constraint with infinite horizon

Show that the no-Ponzi-game condition together with the dynamic budget constraints implies the intertem-

poral budget constraint

a0R0 +

∞∑
t=0

qt(wt − ct) ≥ 0.

Solution:

Remember that in the finite case the intertemporal budget constraint is given by:

a0R0 +

T∑
t=0

qt(wt − ct) = qTaT+1

with the terminal condition qTaT+1 ≥ 0. In the infinite horizon model the IBC therefore becomes

a0R0 +

∞∑
t=0

qt(wt − ct) = lim
T→∞

qTaT+1.

Combined with the no-Ponzi-game condition the IBC is therefore given by

a0R0 +

∞∑
t=0

qt(wt − ct) = lim
T→∞

qTaT+1 ≥ 0

a0R0 +

∞∑
t=0

qt(wt − ct) ≥ 0

3 Solution: Non-Geometric Discounting and Time-Consistency

Consider the following three period model, t = 0, 1, 2. At date t = 0 preferences are given by u(c0) +

β(u(c1) + u(c2)), but at time t = 1 preferences are given by u(c1) + βu(c2). For simplicity, assume that

wt = w and Rt = 1, t = 0, 1, 2.

Set up the problem of a household under commitment at t = 0 and the problem of a household that

re-optimizes at t = 1. Derive the Euler equations of the two problems and show that the household that

re-optimizes every period would choose a different consumption plan.

Solution:

1. Commitment: A household with commitment will solve the problem at t = 0 and then stay on that

path forever after

max
c0,c1,c2

u(c0) + β(u(c1) + u(c2))

s.t. c0 + c1 + c2 = 3w + a0

with the first order conditions given by

c0 : u′(c0) = λ,

c1 : βu′(c1) = λ,

c2 : βu′(c2) = λ.
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The euler equations are then given by

u′(c0) = βu′(c1) (1)

u′(c1) = u′(c2) (2)

Since the consumer does not reoptimize at period t = 1, we find that c1 = c2 (given that u′′(·) < 0.

2. No Commitment: A household without commitment will reoptimize the consumption choice in

every period given its utility function and assets. In period t = 1 it will therefore solve the following

problem

max
c1,c2

u(c1) + βu(c2)

s.t. c1 + c2 = 2w + a1

which gives the euler equation

u′(c1) = βu′(c2).

This yields c1 > c2. Note that this is not optimal from the consumers perspective at time t = 0. The

consumer at time t = 0 anticipates the behaviour of its future self and optimizes the consumption

path given the future consumption choice

max
c0,c1,c2

u(c0) + β(u(c1) + u(c2))

s.t. c0 + c1 + c2 = 3w + a0

u′(c1) = βu′(c2)

Note that the second constraint is simply the euler equation chosen by the household at t = 1. The

first order conditions are

c0 : u′(c0) = λ1,

c1 : βu′(c1) = λ1 + λ2u
′′(c1),

c2 : βu′(c2) = λ1 − λ2βu′′(c2).

With λ2 given by

βu′(c1)− λ2u′′(c1) = βu′(c2) + λ2βu
′′(c2)

λ2 = β
u′(c1)− u′(c2)

u′′(c1) + βu′′(c2)
.

The euler equations are then given by

u′(c0) = βu′(c1)− β u′(c1)− u′(c2)

u′′(c1) + βu′′(c2)
u′′(c1) (3)

u′(c1) = βu′(c2). (4)

Comparing the euler equations (2) with (4) we see that without commitment c2 < c1 where as with com-

mitment c1 = c2. Equivalently, because u′′(c1) < 0 and λ2 > 0, we see from (3) that without commitment

u′(c0) > βu′(c1). It follows that c1
c0

is larger without commitment, meaning that the consumer in period

t = 0 is consuming less in the initial period because she anticipates that the consumer in period t = 1
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will choose c1 > c2. She therefore reduces c0 to increase consumption in period t = 2 where the marginal

benefit will be larger from todays perspective.

4 Solution: Dynamic programming

Let Vt(at) denote the maximal utility which the household can achieve from period t on if it enters the

period with assets at.

1. Show that

Vt(at) = max
{cs,as+1}Ts=t

T∑
s=t

βs−tu(cs)

s.t. as+1 = asRs + ws − cs for s = t, t+ 1, . . . , T

at given

aT+1 ≥ 0

can be rewritten as

Vt(at) = max
ct,at+1

[u(ct) + βVt+1(at+1)]

s.t. at+1 = atRt + wt − ct
at given.

Solution:

For ease of notation let C denote the set of dynamic budget constraints at date t+ 1 and later as well

as the terminal condition aT+1 ≥ 0

Vt(at) = max
{cs,as+1}Ts=t

T∑
s=t

βs−tu(cs) s.t. DBCt, C, at given

= max
ct,at+1

u(ct) +

(
max

{cs,as+1}Ts=t+1

T∑
s=t+1

βs−tu(cs) s.t. C, at+1 given

)
, s.t. DBCt, at given

= max
ct,at+1

u(ct) + β

 max
{cs,as+1}Ts=t+1

T∑
s=t+1

βs−(t+1)u(cs) s.t. C, at+1 given︸ ︷︷ ︸
=Vt+1(at+1)

 , s.t. DBCt, at given

Vt(at) = max
ct,at+1

u(ct) + βVt+1(at+1), s.t. DBCt, at given

Now consider the Bellman equation

Vt(at) = max
at+1

[u(atRt + wt − at+1) + βVt+1(at+1)] .

Note that VT+1(aT+1) = 0, implying the optimal choice a∗T+1 = 0.

2. By backward induction, solve for the value functions VT (aT ) and VT−1(aT−1), and for the policy

functions aT (aT−1) and aT−1(aT−2), given the assumptions that u(ct) = ln(ct) and wt = 0 for all

t.
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Solution:

VT (aT ) = max
aT+1

u(aTRT + wT︸︷︷︸
=0

−aT+1) + β VT+1(aT+1)︸ ︷︷ ︸
=0,∀aT+1

= max
aT+1

u(aTRT − aT+1)

It follows that the optimal policy function and value function at T are given as follows:

a∗T+1(aT ) = 0

VT (aT ) = u(aTRT ) = ln(aTRT )

We can continue by backwards induction:

VT−1(aT ) = max
aT

u(aT−1RT−1 − aT ) + βVT (aT )

max
aT

ln(aT−1RT−1 − aT ) + β ln(aTRT )

This is a problem that we can solve for. Let’s start by finding the first order conditions wrt aT :

V ′T−1(aT ) =
−1

aT−1RT−1 − aT
+ β

RT
aTRT

!
= 0

aT = β(aT−1RT−1 − aT )

a∗T (aT−1) =
β

1 + β
aT−1RT−1

The value function is then given by:

VT−1(aT ) = max
aT

ln(aT−1RT−1 − aT ) + β ln(aTRT )

= ln

(
aT−1RT−1 −

β

1 + β
aT−1RT−1

)
+ β ln

(
β

1 + β
aT−1RT−1RT

)
= ln

(
1

1 + β
aT−1RT−1

)
+ β ln

(
β

1 + β
aT−1RT−1RT

)
= (1 + β) ln(aT−1) + ϕ

where ϕ = ln
(

1
1+βRT−1

)
+ β ln

(
β

1+βRT−1RT

)
collects all terms independent of aT−1. Using the

result for VT−1(aT ) we can proceed the same way to find the policy function for aT−1(aT−2):

VT−2(aT−1) = max
aT−1

ln(aT−2RT−2 − aT−1) + β(1 + β) ln(aT−1) + βϕ

V ′T−2(aT−1) =
−1

aT−2RT−2 − aT−1
+
β(1 + β)

aT−1

!
= 0

aT−1 = β(1 + β)(aT−2RT−2 − aT−1)

a∗T−1(aT−2) =
β(1 + β)

1 + (β(1 + β))
aT−2RT−2

3. Using the Bellman equation and the envelope theorem, derive the Euler equation.

Solution:

6/9



Macroeconomics II Problem Set III

Different ways to approach this problem, one way is to use the DBCt to substitute for ct:

Vt(at) = max
at+1

u(atRt + wt − at+1) + βVt+1(at+1)

Take the first order condition with respect to at+1:

u′(atRt + wt − at+1)(−1) + βV ′t+1(at+1)
!
= 0

u′( ct︸︷︷︸
=atRt+wt−at+1

) = βV ′t+1(at+1) (5)

Revision envelope theorem: Differentiate the value function Vt(at) with respect to at

V ′t (at) = u′( ct︸︷︷︸
=atRt+wt−at+1

)(Rt −
∂at+1

at
) + βV ′t+1(at+1)

∂at+1

at

= u′(ct)Rt +
∂at+1

at

(
βV ′t+1(at+1)− u′(ct)

)
Since the value function is defined by the optimal choice for at+1 we can make use of the result in

(5) and we find

V ′t (at) = u′(ct)Rt +
∂at+1

at

βV ′t+1(a∗t+1)− u′(c∗t )︸ ︷︷ ︸
=0


= u′(ct)Rt

Use the envelope theorem to find V ′t+1(at+1)

V ′t (at) = u′(ct)Rt,∀t

⇒ V ′t+1(at+1) = u′(ct+1)Rt+1

Combining the result from the envelope theorem with the result from (5) we find the euler equation:

u′(ct) = βRt+1u
′(ct+1)

5 Solution: Dynamic programming with infinite horizon: guess and verify

Assume that u(ct) = ln(ct), wt = 0 and Rt = R for all t. Thus the Bellman equation is given by

V (a) = max
a+

ln(aR− a+) + βV (a+).

Solve for the value function V (a) and for the policy function g(a) in the infinite horizon case using a

guess and verify approach. An educated guess for the two functions is

V (a) = F ln a+G

g(a) = HaR,

where F,G and H are unknown coefficients. Proceed as follows:

1. Using the Bellman equation, show that given the guess for V (a), the policy function is indeed of the

form g(a) = HaR. Solve for H as a function of β, F and G.

Solution:
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Using the suggested guess the bellman equation becomes

V (a) = max
a+

ln(aR− a+) + βV (a+)

F ln a+G = max
a+

ln(aR− a+) + β(F ln a+ +G)

We can find the policy function g(a) by taking the first derivative with respect to a+:

−1

aR− a+
+ β

F

a+

!
= 0

a+ = βF (aR− a+)

a+ =
βF

1 + βF
aR. (6)

Conditional on our guess for the value function we verified that g(a) = HaR, where H = βF
1+βF .

2. Using the Bellman and your result from a., use the method of undetermined coefficients to solve for

the coefficients F,G and H.

Solution:

To use the method of undetermined coefficients we make use of the result from (6) and plug it into

our guess for the value function:

V (a) = max
a+

ln(aR− a+) + βV (a+)

F ln a+G = ln

(
aR− βF

1 + βF
aR

)
+ β

[
F ln

(
βF

1 + βF
aR

)
+G

]
= ln

([
1− βF

1 + βF

]
aR

)
+ β

[
F ln

(
βF

1 + βF
aR

)
+G

]
= ln

(
1

1 + βF

)
+ ln(a) + ln(R) + βF ln

(
βF

1 + βF

)
+ βF ln(a) + βF ln(R) + βG

where the maxa+ is dropped in the secon line because (conditional on our guess is correct) g(a) is

maximizing the value function. We now collect terms depending on a to find the coefficient F and

collect terms independent of a to find the coefficient G:

F ln a+G = ln

(
1

1 + βF

)
+ ln(a) + ln(R) + βF ln

(
βF

1 + βF

)
+ βF ln(a) + βF ln(R) + βG

F ln a︸ ︷︷ ︸
1.→F

+ G︸︷︷︸
2.→G

= (1 + βF ) ln(a)︸ ︷︷ ︸
1.→F

+ ln

(
1

1 + βF

)
+ +βF ln

(
βF

1 + βF

)
+ (1 + βF ) ln(R) + βG︸ ︷︷ ︸

2.→G

(7)

First we can find the coefficient F :

F = (1 + βF )

F =
1

1− β
(8)
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Now we can use (8) in (7) to find the coefficient G

G = ln

(
1

1 + βF

)
+ βF ln

(
βF

1 + βF

)
+ (1 + βF ) ln(R) + βG

(1− β)G = ln

(
1

1 + β 1
1−β

)
+ β

1

1− β
ln

(
β 1

1−β

1 + β 1
1−β

)
+

(
1 + β

1

1− β

)
ln(R)

= ln (1− β) +
β

1− β
ln(β) +

(
1

1− β

)
ln(R)

G =
1

1− β

[
ln (1− β) +

β

1− β
ln(β) +

(
1

1− β

)
ln(R)

]
(9)

The only thing that remains to be done is to find a solution for H by using (8)

H =
βF

1 + βF

=
β 1

1−β

1 + β 1
1−β

H = β (10)

The results from (8), (9) and (10) verify our initial guess and we found a closed form solution for

the value function and the policy function.
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