Problem Set V

Macroeconomics II

Armando Näf*

July 31, 2020

1 General equilibrium in an OLG Model

Consider a standard OLG model we studied in class with two cohorts, young and old. Households are infinitely lived with utilities such that $u'(\cdot) > 0$ and $u''(\cdot) < 0$. Firms have access to a constant return to scale technology.

- 1. Assume that the population is constant. State the conditions that arise from
 - (a) utility maximization of households,
 - (b) profit maximization of firms, and
 - (c) feasibility.
- 2. Combine these conditions to derive the three core equations that characterize the OLG model without population growth.

2 Law of motion for capital, equilibrium allocation and prices

Consider an OLG model like the one we discussed in 1 without population growth. Assume logarithmic preferences $u(c_t) = \ln(c_t)$.

- 1. Show that the equilibrium law of motion for capital is given by $k_{t+1} = \frac{\beta}{1+\beta} f_L(k_t, 1)$.
- 2. Characterize the equilibrium path of k_t graphically assuming the Cobb-Douglas production function $f(K_t, L_t) = K_t^{\alpha} L_t^{1-\alpha}$.
- 3. Characterize the equilibrium allocation and prices.

3 Individual and aggregate savings

Suppose that young households save a constant fraction of their labor income for retirement. Assume that there is a constant population growth ν , such that $N_{1,t} = \nu N_{2,t}$, where $N_{i,t}$ is the size of cohort *i* at time *t*.

- 1. Define savings of young and old households as well as aggregate savings.
- 2. How do aggregate savings evolve over time if the population size is either constant or growing and wages are either constant or growing?

^{*}I am sure there are many typos in the script. If you find any please send me an email to armando.naef@vwi.unibe.ch

4 Government intervention

Consider an infinite-horizon OLG model without population growth in which capital does not contribute to production (i.e., $f(K_t, L_t) = L_t$ or $f(k_t, 1) = 1$), but may be stored from one period to the next with depreciation rate δ .

1. Show that the steady state of this economy is necessarily dynamically inefficient.

Suppose that there is a government transferring b from young to old households in each period.

- 2. Which condition needs to hold for a marginal increase in b leading to a Pareto improvement? Does it hold for the economy in this exercise?
- 3. What amount of social security transfer b is optimal?