Problem Set VI

Macroeconomics II

Armando Näf*

July 31, 2020

1 Incomplete markets

There is a representative household living for three periods (t = 0, 1, 2). There is only one asset available for saving. The household faces risk regarding future wages and interest rates (i.e., w_1 , R_1 , w_2 and R_2 are unknown). Suppose that there are two possible states of nature in periods t = 1 and t = 2, state hand state l, which occur with probabilities π_h and $\pi_l = 1 - \pi_h$, respectively.

- 1. Write down the maximization problem of the household. What are the choice variables in this problem?
- 2. Solve the maximization problem and derive the three Euler equations.

Suppose now additionally that $\beta R_t = 1$ for all t, there are no assets to start with $(a_0 = 0)$, and utility is quadratic, i.e.,

$$u(c_t) = \phi c_t - \frac{1}{2}c_t^2,$$

in which ϕ is large relative to c_t . Wages in period t = 1 and t = 2 can take the values $w_{1,i}$ and $w_{2,ij}$, respectively, where *i* indexes the state in period t = 1 and *j* indexes the state in period t = 2, with $i, j \in \{h, l\}$.

- 3. Show that the quadratic utility function features decreasing, linear marginal utility.
- 4. Derive the intertemporal budget constraint(s). How many of them are there?
- 5. Use the Euler equations to show that $\mathbb{E}_0[c_1 c_0] = 0$.
- 6. Using the intertemporal budget constraints as of time t = 0 and t = 1, derive the optimal consumption c_0^* , $c_{1,h}^*$ and $c_{1,l}^*$.
- 7. What is the sign and the magnitude of $c_{1,i}^* c_0^*, i = h, l$?

2 Complete markets

Consider a two-period model with two states of nature in the second period, h and l, occurring with probabilities π_h and $\pi_l = 1 - \pi_h$ and in which wages amount to $w_1(h)$ and $w_1(l)$, respectively. There are two assets, $a_1^{(1)}$ and $a_1^{(2)}$. In period t = 0 the household starts with wage w_0 and initial assets a_0 .

^{*}I am sure there are many typos in the script. If you find any please send me an email to armando.naef@vwi.unibe.ch

- 1. Suppose that the return vectors of the assets are given by $[1 \ r]$ and $[s \ 1]$, respectively, across the two states h and l. If r = s = 0, these assets are Arrow securities. However, Arrow securities are not required for market completeness. Are markets complete if r = s = 1? What if r = 1 and s = 0.5? What if $r = \frac{1}{s}$?
- 2. Write down the dynamic budget constraints given return vectors $[R_1^{(1)}(h) R_1^{(1)}(l)]$ and $[R_1^{(2)}(h) R_1^{(2)}(l)]$.
- 3. Suppose that the return vectors are $[R_1^{(1)}(h) \ 0]$ and $[0 \ R_1^{(2)}(l)]$. Solve the maximization problem of the household and derive the Euler equations.